K-Even Edge-Graceful Labeling of Some Cycle Related Graphs

¹Dr. B. Gayathri, ²S. Kousalya Devi

^{1,2}M.Sc., M.Phil., Ph.D., Pgdca., M.C.A., Associate Professor And Research AdvisorPost Graduate & Research Department Of Mathematics Periyar E.V.R.College (Autonomous) Tiruchirappalli-620 023. Tamilnadu. India.

ABSTRACT: In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edge-graceful graphs. We introduced k-even edge-graceful graphs. In this paper, we investigate the k-even edge-gracefulness of some cycle related graphs.

KEYWORDS: k-even edge-graceful labeling, *k*-even edge-graceful graphs. AMS(MOS) subject classification: 05*C*78.

I. INTRODUCTION

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary[5]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph.

In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs and further studied in. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edge-graceful graphs. We have introduced k-even edge- graceful graphs.

Definition 1.1:

k-even edge-graceful labeling (k-EEGL) of a (p, q) graph G(V, E) is an injection f from E to $\{2k - 1, 2k, k\}$

2k + 1, ..., 2k + 2q - 2 such that the induced mapping f^+ defined on V by $f^+(x) = (\Sigma f(xy)) \pmod{2s}$ taken over all edges xy are distinct and even where $s = max\{p, q\}$ and k is an integer greater than or equal to 1. A graph G that admits k-even edge-graceful labeling is called a k-even edge-graceful graph (*K*-*EEGG*).

Remark 1.2:

1-even edge-graceful labeling is an even edge-graceful labeling.

The definition of *k*-edge-graceful and *k*-even edge-graceful are equivalent to one another in the case of trees.

The edge-gracefulness and even edge-gracefulness of odd order trees are still open. The theory of 1-even edge-graceful is completely different from that of k- even edge-graceful. For example, tree of order 4 is 2-even edge-graceful but not 1-even edge-graceful. In this paper we investigate the k-even edge-gracefulness of some cycle related graphs. Throughout this paper, we assume that k is a positive integer greater than or equal to 1.

2. Prior Results:

1.Theorem : If a (p, q) graph G is k-even edge-graceful with all edges labeled with even numbers and $p \ge q$ then G is k-edge-graceful.

2.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and

$$p \ge q$$
 then $q(q + 2k - 1) \equiv \frac{p(p+1)}{2} \pmod{p}$.

Further $q(q+2k-1) \equiv \begin{cases} 0 \pmod{p} & \text{if } p \text{ is odd} \\ \frac{p}{2} \pmod{p} & \text{if } p \text{ is even} \end{cases}$

3.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and $p \ge q$ then $p \equiv 0, 1$ or 3 (mod 4).

4.Theorem : If a (p, q) graph G is a k-even edge-graceful tree of odd order then

$$k = \frac{p}{2}\left(l-1\right) + 1$$

where *l* is any odd positive integer and hence $k \equiv 1 \pmod{p}$.

5. Observation : We observe that any tree of odd order p has the sum of the labels congruent to $0 \pmod{p}$.

6. Theorem : If a (p, q) graph G is a k-even edge-graceful tree of even order with $p \equiv 0 \pmod{4}$ then $k = \frac{p}{4} (2l-1) + 1$ where l is any positive integer.

Further $k \equiv \begin{cases} \frac{p+4}{4} \pmod{p} & \text{if } l \text{ is odd} \\ \frac{3p+4}{4} \pmod{p} & \text{if } l \text{ is even} \end{cases}$

2. MAIN RESULTS

Definition 2.1

Let C_n denote the cycle of length *n*. Then the join of $\{e\}$ with any one vertex of C_n is denoted by $C_n \cup \{e\}$. In this graph, p = q = n + 1.

Theorem 2.2

The graph $C_n \cup \{e\}$ of even order is *k*-even-edge-graceful for all $k \equiv z \left(\mod \frac{p}{2} \right)$, where $0 \le z \le \frac{p}{2} - 1$, $n \equiv 1 \pmod{4}$ and $n \ne 1$.

Proof

Let $\{v_1, v_2, ..., v_n, v\}$ be the vertices of $C_n \cup \{e\}$, the edges $e_i = (v_i, v_{i+1})$ for $1 \le i \le n-1$; $e_n = (v_n, v_1)$ and $e_{n+1} = (v_2, v)$ (see Figure 1).

Figure 1: $C_n \cup \{e\}$ with ordinary labeling

First, we label the edges as follows:

For $k \ge 1$, $1 \le i \le n$ and i is odd,

$$f\left(e_{i}\right) = 2k + i - 2$$

When *i* is even, we label the edges as follows:

For
$$k \equiv z \left(\mod \frac{p}{2} \right)$$
, $0 \le z \le \frac{p-2}{4}$,

$$\begin{split} f\left(e_{i}\right) &= \begin{cases} 2k+n+i-2 & \text{for } 1 \leq i < \frac{n-4z+7}{2} \\ 2k+n+i & \text{for } \frac{n-4z+7}{2} \leq i \leq n. \end{cases} \\ \\ \text{For } k &= \frac{p+2}{4} \left(\mod \frac{p}{2} \right), \\ f\left(e_{i}\right) &= 2k+n+i. \end{cases} \\ \text{For } k &= \frac{p+6}{4} \left(\mod \frac{p}{2} \right), \\ f\left(e_{i}\right) &= 2k+n+i-2. \end{cases} \\ \\ \text{For } k &= z \left(\mod \frac{p}{2} \right), \frac{p+10}{4} \leq z \leq \frac{p}{2} - 1, \\ \\ \text{For } k &= z \left(\mod \frac{p}{2} \right), \frac{p+10}{4} \leq z \leq \frac{p}{2} - 1, \\ f\left(e_{i}\right) &= \begin{cases} 2k+n+i-2 & \text{for } 1 \leq i < \frac{3n-4z+9}{2} \\ 2k+n+i & \text{for } \frac{3n-4z+9}{2} \leq i \leq n. \end{cases} \\ \\ f\left(e_{n+1}\right) &= \begin{cases} 2k & \text{when } k = 0 \pmod{p} \\ 2k+2n-2z+2 & \text{when } k = z \pmod{p} \text{ and } 1 \leq z \leq p-1. \end{cases} \end{split}$$

Then the induced vertex labels are as follows:

Case 1:
$$k \equiv z \left(m \text{ od } \frac{p}{2} \right)$$
, $0 \le z \le \frac{p-2}{4}$
 $f^+(v_i) = \begin{cases} n+4z+2i-5 & \text{for } 1 \le i < \frac{n-4z+7}{2} \\ 4z-n+2i-5 & \text{for } \frac{n-4z+7}{2} \le i \le n. \end{cases}$
Case 2: $k \equiv \frac{p+2}{4} \left(m \text{ od } \frac{p}{2} \right)$
 $f^+(v_i) = 2n$; $f^+(v_i) = 2i-2$ for $2 \le i \le n.$
Case 3: $k \equiv \frac{p+6}{4} \left(m \text{ od } \frac{p}{2} \right)$
 $f^+(v_i) = 2i$ for $1 \le i \le n.$
Case 4: $k \equiv z \left(m \text{ od } \frac{p}{2} \right)$, $\frac{p+10}{4} \le z \le \frac{p}{2} - 1$

$$f^{+}(v_{i}) = \begin{cases} 4z - n + 2i - 7 & \text{for } 1 \le i < \frac{3n - 4z + 9}{2} \\ 4z - 3n + 2i - 7 & \text{for } \frac{3n - 4z + 9}{2} \le i \le n. \end{cases}$$

For $k \equiv z \left(\mod \frac{p}{2} \right), \ 0 \le z \le \frac{p}{2} - 1,$
$$f^{+}(v_{n+1}) = 0.$$

Therefore, $f^+(V) = \{0, 2, 4, ..., 2s - 2\}$, where $s = \max\{p, q\} = n + 1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $C_n \cup \{e\}$ of even order is k-even-edge-graceful for all $k \equiv z \pmod{\frac{p}{2}}$, where $0 \le z \le \frac{p}{2} - 1$, $n \equiv 1 \pmod{4}$ and $n \ne 1$.

 $0 \le z \le \frac{p}{2} - 1$, $n \equiv 1 \pmod{4}$ and $n \ne 1$.

For example, consider the graph $C_{13} \cup \{e\}$. Here n = 13;

 $s = \max \{p, q\} = 14; 2s = 28$. The 21-*EEGL* of $C_{13} \cup \{e\}$ is given in Figure 2.

Figure 2: 21-*EEGL* of $C_{13} \cup \{e\}$

For example, consider the graph $C_{17} \cup \{e\}$. Here n = 17;

 $s = \max \{p, q\} = 18; 2s = 36$. The 5-*EEGL* of $C_{17} \cup \{e\}$ is given in Figure 3.

Figure 3: 5-*EEGL* of $C_{17} \cup \{e\}$

Definition 2.3 [8]

For $p \ge 4$, a cycle (of order p) with one chord is a simple graph obtained from a p-cycle by adding a chord. Let the p-cycle be $v_1v_2 \dots v_pv_1$. Without loss of generality, we assume that the chord joins v_1 with any one v_i , where $3 \le i \le p-1$. This graph is denoted by $C_p(i)$. For example $C_p(5)$ means a graph obtained from a pcycle by adding а chord between vertices v_1 In this the and V5. graph, q = p + 1.

Theorem 2.4

The graph $C_n(i)$, (n > 4), $3 \le i \le n - 1$, cycle with one chord of odd order is k-even-edge-graceful for all

$$k \equiv z \left(\text{ m o d } \frac{q}{2} \right)$$
, where $0 \le z \le \frac{q}{2} - 1$.

Proof

Let $\{v_1, v_2, v_3, \dots, v_i, v_{i+1}, \dots, v_n\}$ be the vertices of $C_n(i)$, the edges $e_i = (v_i, v_{i+1})$ for $1 \le i \le n-1$; $e_n = (v_n, v_1)$ and $e_{n+1} = (v_1, v_i)$, $3 \le i \le n-1$ (see Figure 4). The chord connecting the vertex v_1 with v_i , $(i \ge 3)$ is shown in Figure 4. For this graph, p = n and q = n+1.

Figure 4: $C_n(i)$ with ordinary labeling

First, we label the edges as follows: For $k \ge 1$ and $1 \le i \le n$,

$$f(e_i) = \begin{cases} 2k + i - 2 & \text{when } i \text{ is odd} \\ 2k + n + i - 2 & \text{when } i \text{ is even.} \end{cases}$$

$$f(e_{n+1}) = \begin{cases} 2k & \text{when } k \equiv 0 \pmod{q} \\ 2k + 2n - 2z + 2 & \text{when } k \equiv z \pmod{q}, 1 \le z \le q - 1. \end{cases}$$

Then the induced vertex labels are as follows:

Case I: $n \equiv 1 \pmod{4}$ and $n \neq 1$

Case 1:
$$k \equiv z \left(\mod \frac{q}{2} \right), 0 \le z \le \frac{q+2}{4}$$

 $f^+(v_i) = \begin{cases} 4z + n + 2i - 5 & \text{for } 1 \le i < \frac{n-4z+7}{2} \\ 4z - n + 2i - 7 & \text{for } \frac{n-4z+7}{2} \le i \le n. \end{cases}$

Case 2: $k = \frac{q+6}{4} \left(\mod \frac{q}{2} \right)$ $f^+(v_i) = 2i \quad \text{for } 1 \le i \le n.$

Case 3:
$$k = z \left(\mod \frac{q}{2} \right), \quad \frac{q+10}{4} \le z \le \frac{q}{2} - 1$$

 $f^+(v_i) = \begin{cases} 4z - n + 2i - 7 & \text{for } 1 \le i < \frac{3n - 4z + 9}{2} \\ 4z - 3n + 2i - 9 & \text{for } \frac{3n - 4z + 9}{2} \le i \le n. \end{cases}$

Case II: $n \equiv 3 \pmod{4}$ and $n \neq 3$

Case 1:
$$k \equiv z \left(\mod \frac{q}{2} \right), \ 0 \le z \le \frac{q}{4}$$

 $f^+(v_i) = \begin{cases} 4z + n + 2i - 5 & \text{for } 1 \le i < \frac{n - 4z + 7}{2} \\ 4z - n + 2i - 7 & \text{for } \frac{n - 4z + 7}{2} \le i \le n. \end{cases}$

Case 2: $k = \frac{q+4}{4} \left(\mod \frac{q}{2} \right)$ $f^{+}(v_{i}) = 2i-2 \text{ for } 1 \le i \le n.$ Case 3: $k = z \left(\mod \frac{q}{2} \right), \frac{q+8}{4} \le z \le \frac{q}{2} - 1$ $f^{+}(v_{i}) = \begin{cases} 4z - n + 2i - 7 & \text{for } 1 \le i < \frac{3n - 4z + 9}{2} \\ 4z - 3n + 2i - 9 & \text{for } \frac{3n - 4z + 9}{2} \le i \le n. \end{cases}$

Therefore, $f^+(V) \subseteq \{0, 2, 4, ..., 2s - 2\}$, where $s = \max\{p, q\} = n + 1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph

 $C_n(i), (n > 4), 3 \le i \le n - 1$, cycle with one chord of odd order is *k*-even-edge-graceful for all $k \equiv z \left(m \text{ od } \frac{q}{2} \right)$, $0 \le z \le \frac{q}{2} - 1$

 $0 \le z \le \frac{q}{2} - 1 \, . \, \bullet$

For example, consider the graph $C_9(5)$. Here n = 9; $s = \max \{p, q\} = 10$; 2s = 20.

The 15-even-edge-graceful labeling of $C_{9}(5)$ is given in Figure 5.

For example, consider the graph $C_{11}(6)$. Here n = 11; $s = \max \{p, q\} = 12$; 2s = 24. The *11-EEGL* of $C_{11}(6)$ is given in Figure 6.

Figure 6: 11-*EEGL* of *C*₁₁(6)

Theorem 2.5

The graph $C_n(i)$, $(n \ge 4)$, $3 \le i \le n - 1$, cycle with one chord of even order is k-even-edge-graceful for all $k \equiv z \pmod{q}$, where $0 \le z \le q - 1$ and $n \equiv 0 \pmod{4}$.

Proof

Let the vertices and edges be defined as in Theorem 6.3.2. First, we label the edges as follows: For $k \ge 1$,

$$f(e_{i}) = 2k+1 \qquad ; \qquad f(e_{2}) = 2k-1$$

$$f(e_{i}) = 2k+2i-3 \qquad \text{for } 3 \le i < \frac{n}{2}+3.$$
For $k \ge 1$ and $\frac{n}{2}+3 \le i \le n$,
$$f(e_{i}) = \begin{cases} 2k+2i+1 & \text{when } i \text{ is odd} \\ 2k+2i-3 & \text{when } i \text{ is even.} \end{cases}$$

$$f(e_{n+1}) = \begin{cases} 2k & \text{when } k \equiv 0 \pmod{q} \\ 2k + 2n - 2z + 2 & \text{when } k \equiv z \pmod{q}, \ 1 \le z \le q - 1 \end{cases}$$

Then the induced vertex labels are as follows: Case 1: $k \equiv 0 \pmod{q}$

 $f^{+}(v_{1}) = 2n-2 \qquad ; \qquad f^{+}(v_{2}) = 0.$ $f^{+}(v_{3}) = 2.$ $f^{+}(v_{i}) = \begin{cases} 4i-8 & \text{for } 4 \le i < \frac{n}{2} + 3 \\ 4i-2n-6 & \text{for } \frac{n}{2} + 3 \le i \le n. \end{cases}$

Case 2: $k \equiv z \pmod{q}, \ 1 \le z \le \frac{q-1}{2}$

$$f^{+}(v_{i}) = 4z + 4i - 8$$
 when $i = 1, 2$.

For $k \equiv z \pmod{q}$, $1 \le z \le \frac{q-3}{2}$,

$$f^{+}(v_{3}) = 4z + 2$$

For $4 \le i \le n$,

$$f^{+}(v_{i}) = \begin{cases} 4z + 4i - 8 & \text{for } 4 \le i < \frac{n}{2} - z + 3 \\ 4z + 4i - 2n - 10 & \text{for } \frac{n}{2} - z + 3 \le i < \frac{n}{2} + 3 \\ 4z + 4i - 2n - 6 & \text{for } \frac{n}{2} + 3 \le i < n - z + 2 \\ 4z + 4i - 4n - 8 & \text{for } n - z + 2 \le i \le n. \end{cases}$$

For $k \equiv \frac{q-1}{2} \pmod{q}$, $f^{+}(v_{3}) = 0$ $f^{+}(v_{i}) = \begin{cases} 4i - 10 & \text{for } 4 \le i < \frac{n}{2} + 3 \\ 4i - 2n - 8 & \text{for } \frac{n}{2} + 3 \le i \le n. \end{cases}$ Case 3: $k \equiv \frac{q+1}{2} \pmod{q}$ $f^{+}(v_{i}) = 2n$: $f^{+}(v_{i}) = 2$.

$$f^{+}(v_{1}) = 2n$$
; $f^{+}(v_{2})$
 $f^{+}(v_{3}) = 4.$

$$f^{+}(v_{i}) = \begin{cases} 4i - 6 & \text{for } 4 \le i < \frac{n}{2} + 2 \\ 0 & \text{when } i = \frac{n}{2} + 2 \\ 4i - 2n - 4 & \text{for } \frac{n}{2} + 3 \le i \le n \end{cases}$$

Case 4: $k \equiv z \pmod{q}, \frac{q+3}{2} \le z \le q-1$ $f^{+}(v_i) = 4z + 4i - 2n - 10$ when i = 1, 2. $f^{+}(v_3) = 4z - 2n$.

For
$$k \equiv z \pmod{q}$$
, $\frac{q+3}{2} \le z \le q-2$,

$$f^{+}(v_{i}) = \begin{cases} 4z+4i-2n-10 & \text{for } 4 \le i < n-z+3 \\ 4z+4i-4n-12 & \text{for } n-z+3 \le i < \frac{n}{2}+3 \\ 4z+4i-4n-8 & \text{for } \frac{n}{2}+3 \le i < \frac{3n}{2}-z+3 \\ 4z+4i-6n-10 & \text{for } \frac{3n}{2}-z+3 \le i \le n. \end{cases}$$

For $k \equiv q - 1 \pmod{q}$,

$$f^{+}(v_{i}) = \begin{cases} 4i - 12 & \text{for } 4 \le i < \frac{n}{2} + 3 \\ 4i - 2n - 10 & \text{for } \frac{n}{2} + 3 \le i \le n. \end{cases}$$

Therefore, $f^{+}(V) \subseteq \{0, 2, 4, ..., 2s - 2\}$, where $s = \max\{p, q\} = n + 1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $C_n(i)$, $(n \ge 4)$, $3 \le i \le n - 1$, cycle will one chord of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{q}$, where $0 \le z \le q - 1$ and $n \equiv 0 \pmod{4}$. For example, consider the graph $C_{16}(5)$, Here n = 16; $s = \max\{p, q\} = 17$; 2s = 34.

The *18-EEGL* of $C_{16}(5)$ is given in Figure 7.

Figure 7: 18-*EEGL* of *C*₁₆(5)

Definition 2.6

The crown $C_n \odot K_1$ is the graph obtained from the cycle C_n by attaching pendant edge at each vertex of the cycle and is denoted by C_n^+ . In this graph, p = q = 2n.

Theorem 2.7

The crown graph C_n^+ , $(n \ge 3)$ of even order is k-even-edge-graceful for all $k \equiv z \left(\mod \frac{p}{3} \right)$,

where $0 \le z \le \frac{p}{3} - 1$ and $n \equiv 0 \pmod{3}$.

Proof

For this graph, p = q = 2n. Let $v_1, v_2, v_3, ..., v_n$ and $v_1, v_2, v_3, ..., v_n$ be the vertices and pendant vertices of C_n^+ respectively.

Figure 8: C_n^+ with ordinary labeling

The edges are defined by

 $e_{i} = (v_{i}, v_{i+1}) \quad \text{for } 1 \le i \le n-1 \quad ; \quad e_{n} = (v_{n}, v_{1})$ and $e_{i} = (v_{i}, v_{i}) \quad \text{for } 1 \le i \le n \text{ (see Figure 8).}$

First, we label the edges as follows: For $k \ge 1$,

$$f(e_i) = 2k + 4i - 5 \qquad \text{for } 1 \le i \le n$$

$$f(e_i) = 2k$$

$$f(e_i) = 2k + 4(n - i + 1) \qquad \text{for } 2 \le i \le n.$$

Then the induced vertex labels are as follows:

Case 1: $k \equiv 0 \left(\mod \frac{p}{3} \right)$

$$f^{+}(v_{i}) = \begin{cases} 4n + 4i - 10 & \text{when } i = 1, 2\\ 4i - 10 & \text{for } 3 \le i \le n. \end{cases}$$

Case 2: $k \equiv z \left(m \text{ od } \frac{p}{3} \right), 1 \le z \le \frac{p}{3} - 1 \text{ and } z \text{ is odd}$ $f^+(v_i) = \begin{cases} 6z + 4i - 10 & \text{for } 1 \le i < n + \frac{5 - 3z}{2} \\ 6z - 4n + 4i - 10 & \text{for } n + \frac{5 - 3z}{2} \le i \le n. \end{cases}$

Case 3: $k \equiv z \left(\mod \frac{p}{3} \right), 1 \le z \le \frac{p}{3} - 1 \mod z$ is even

$$f^{+}(v_{i}) = \begin{cases} 6z + 4i - 10 & \text{for } 1 \le i < n + \frac{6 - 3z}{2} \\ 6z - 4n + 4i - 10 & \text{for } n + \frac{6 - 3z}{2} \le i \le n \end{cases}$$

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph C_n^+ , $(n \ge 3)$ of even order is *k*-even-edge-graceful

for all
$$k \equiv z \left(\mod \frac{p}{3} \right)$$
, where $0 \le z \le \frac{p}{3} - 1$ and $n \equiv 0 \pmod{3}$.

For example, consider the graph C_6^+ . Here p = q = 12; $s = \max\{p, q\} = 12$; 2s = 24. The 2-even-edge-graceful labeling of C_6^+ is given in Figure 9.

Figure 9: 2-*EEGL* of C_{6}^{+}

Theorem 2.8

The crown graph C_n^+ , $(n \ge 4)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p}$, where $0 \le z \le p - 1$, $n \equiv 1 \pmod{3}$ and $n \ne 1$. **Proof**

Let the vertices and edges be defined as in Theorem 6.4.2. The edge labels are also same as in Theorem 6.4.2.

Then the induced vertex labels are as follows:

Case 1:
$$k \equiv 0 \pmod{p}$$

$$f^{+}(v_{i}) = \begin{cases} 4n + 4i - 10 & \text{when } i = 1, 2\\ 4i - 10 & \text{for } 3 \le i \le n. \end{cases}$$

When z is odd, the induced vertex labels are given below:

Case 2:
$$k \equiv z \pmod{p}, 1 \le z \le \frac{p+1}{3}$$

 $f^+(v_i) = \begin{cases} 6z + 4i - 10 & \text{for } 1 \le i < n + \frac{5-3z}{2} \\ 6z - 4n + 4i - 10 & \text{for } n + \frac{5-3z}{2} \le i \le n. \end{cases}$

Case 3: $k \equiv z \pmod{p}, \frac{p+4}{3} \le z \le \frac{2p+2}{3}$

$$f^{+}(v_{i}) = \begin{cases} 6z - 4n + 4i - 10 & \text{for } 1 \le i < 2n + \frac{5 - 3z}{2} \\ 6z - 8n + 4i - 10 & \text{for } 2n + \frac{5 - 3z}{2} \le i \le n \end{cases}$$

Case 4: $k \equiv z \pmod{p}, \frac{2p+5}{3} \le z \le p-1$

$$f^{+}(v_{i}) = \begin{cases} 6z - 8n + 4i - 10 & \text{for } 1 \le i < 3n + \frac{5 - 3z}{2} \\ 6z - 12n + 4i - 10 & \text{for } 3n + \frac{5 - 3z}{2} \le i \le n. \end{cases}$$

When z is even, the induced vertex labels are given below:

Case 5: $k \equiv z \pmod{p}$, $1 \le z \le \frac{p+1}{3}$ $f^{+}(v_{i}) = \begin{cases} 6z + 4i - 10 & \text{for } 1 \le i < n + \frac{6-3z}{2} \\ 6z - 4n + 4i - 10 & \text{for } n + \frac{6-3z}{2} \le i \le n. \end{cases}$

Case 6: $k \equiv z (m \text{ od } p), \frac{p+4}{3} \le z \le \frac{2p+2}{3}$

$$f^{+}(v_{i}) = \begin{cases} 6z - 4n + 4i - 10 & \text{for } 1 \le i < 2n + \frac{6 - 3z}{2} \\ 6z - 8n + 4i - 10 & \text{for } 2n + \frac{6 - 3z}{2} \le i \le n. \end{cases}$$

Case 7: $k \equiv z \pmod{p}, \frac{2p + 5}{3} \le z \le p - 1 \\ \begin{cases} 6z - 8n + 4i - 10 & \text{for } 1 \le i < 3n + \frac{6 - 3z}{2} \end{cases}$

$$f^{+}(v_{i}) = \begin{cases} 2\\ 6z - 12n + 4i - 10 & \text{for } 3n + \frac{6 - 3z}{2} \le i \le n. \end{cases}$$

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph C_n^+ , $(n \ge 4)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p}$, where $0 \le z \le p - 1$, $n \equiv 1 \pmod{3}$ and $n \ne 1$.

For example, consider the graph C_{γ}^{+} . Here p = q = 14; $s = \max \{p, q\} = 14$; 2s = 28. The 5-even-edge-graceful labeling of C_{γ}^{+} is given in Figure 10.

Figure 10: 5-*EEGL* of C_{7}^{+}

Theorem 2.9

The crown graph C_n^+ , $(n \ge 5)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p}$, where $0 \le z \le p - 1$, $n \equiv 2 \pmod{3}$ and $n \ne 2$.

Proof

Let the vertices and edges be defined as in Theorem 2.7. The edge labels are also same as in Theorem 2.7.

Then the induced vertex labels are as follows:

Case 1: $k \equiv 0 \pmod{p}$

$$f^{+}(v_{i}) = \begin{cases} 4n + 4i - 10 & \text{when } i = 1, 2\\ 4i - 10 & \text{for } 3 \le i \le n. \end{cases}$$

When z is odd, the induced vertex labels are given below:

Case 2: $k \equiv z \pmod{p}, 1 \le z \le \frac{p+2}{3}$ $f^+(v_i) = \begin{cases} 6z+4i-10 & \text{for } 1 \le i < n + \frac{5-3z}{2} \\ 6z-4n+4i-10 & \text{for } n + \frac{5-3z}{2} \le i \le n. \end{cases}$

Case 3: $k \equiv z \pmod{p}, \frac{p+5}{3} \le z \le \frac{2p+1}{3}$

$$f^{+}(v_{i}) = \begin{cases} 6z - 4n + 4i - 10 & \text{for } 1 \le i < 2n + \frac{5 - 3z}{2} \\ 6z - 8n + 4i - 10 & \text{for } 2n + \frac{5 - 3z}{2} \le i \le n \end{cases}$$

Case 4: $k \equiv z \pmod{p}, \frac{2p+4}{3} \le z \le p-1$

$$f^{+}(v_{i}) = \begin{cases} 6z - 8n + 4i - 10 & \text{for } 1 \le i < 3n + \frac{5 - 3z}{2} \\ 6z - 12n + 4i - 10 & \text{for } 3n + \frac{5 - 3z}{2} \le i \le n. \end{cases}$$

When z is even, the induced vertex labels are given below:

Case 5:
$$k \equiv z \pmod{p}, 1 \le z \le \frac{p+2}{3}$$

 $f^+(v_i) = \begin{cases} 6z+4i-10 & \text{for } 1 \le i < n + \frac{6-3z}{2} \\ 6z-4n+4i-10 & \text{for } n + \frac{6-3z}{2} \le i \le n. \end{cases}$

Case 6: $k \equiv z \pmod{p}, \frac{p+5}{3} \le z \le \frac{2p+1}{3}$

$$f^{+}(v_{i}) = \begin{cases} 6z - 4n + 4i - 10 & \text{for } 1 \le i < 2n + \frac{6 - 3z}{2} \\ 6z - 8n + 4i - 10 & \text{for } 2n + \frac{6 - 3z}{2} \le i \le n. \end{cases}$$

Case 7:
$$k \equiv z \pmod{p}$$
, $\frac{2p+4}{3} \le z \le p-1$
 $f^{+}(v_i) = \begin{cases} 6z - 8n + 4i - 10 & \text{for } 1 \le i < 3n + \frac{6-3z}{2} \\ 6z - 12n + 4i - 10 & \text{for } 3n + \frac{6-3z}{2} \le i \le n. \end{cases}$

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph C_n^+ , $(n \ge 5)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p}$, where $0 \le z \le p - 1$, $n \equiv 2 \pmod{3}$ and $n \ne 2$.

For example, consider the graph C_5^+ . Here p = q = 10; $s = \max \{p, q\} = 10$; 2s = 20.

The 10-even-edge-graceful labeling of C_5^+ is given in Figure 11.

Figure 11: 10-*EEGL* of C_5^+

Definition 2.10

A graph $H_m(G)$ is obtained from a graph G by replacing each edge with m parallel edges.

Theorem 2.11

The graph $H_n(P_n)$, $(n \ge 2)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p-1}$, where $0 \le z \le p-2$ and *n* is even. **Proof**

Let $\{v_1, v_2, ..., v_n\}$ be the vertices of $H_n(P_n)$. Let the edges e_{ij} of $H_n(P_n)$ be defined by

 $e_{ij} = (v_i, v_{i+1})$ for $1 \le i \le n - 1$, $1 \le j \le n$ (see Figure 12).

Figure 12: $H_n(P_n)$ with ordinary labeling

For this graph, p = n; q = n(n - 1). First, we label the edges as follows: For $k \ge 1$,

$$f\left(e_{ij}\right) = \begin{cases} 2k + ni + 2j - 5 & \text{for } 1 \le i \le n - 1, i \text{ is odd and } 1 \le j \le n \\ 2k + 2j + n(i - 1) - 4 & \text{for } 1 \le i \le n - 1, i \text{ is even and } 1 \le j \le n. \end{cases}$$

Then the induced vertex labels are as follows:

Case 1: $k \equiv 0 \pmod{p-1}$

$$f^{+}(v_{1}) = 2n (n-2).$$

$$f^{+}(v_{i}) = \begin{cases} n (2n+2i-9) & \text{for } 2 \le i < 4 \\ n (2i-7) & \text{for } 4 \le i \le n-1. \end{cases}$$

$$f^{+}(v_{n}) = n (n-4).$$

Case 2: $k \equiv z \pmod{p-1}, 1 \le z \le p-2$

 $f^{+}(v_{1}) = 2n (z-1).$ Subcase (i): $k \equiv 1 \pmod{p-1}$ $f^{+}(v_{i}) = n(2i-3) \text{ for } 2 \le i \le n-1.$ $f^{+}(v_{n}) = n[n+2(z-2)].$

Subcase (ii): $k \equiv z \pmod{p-1}, 2 \le z \le \frac{p}{2}$

$$f^{+}(v_{i}) = \begin{cases} n(2i-3) + 4n(z-1) & \text{for } 2 \le i < n-2z+3 \\ n[2(i+2z-n)-5] & \text{for } n-2z+3 \le i \le n-1. \end{cases}$$

$$f^{+}(v_{n}) = n[n+2(z-2)]$$

Subcase (iii): $k \equiv z \pmod{p-1}, \frac{p+2}{2} \le z \le p-2$ $f^+(v_i) = \begin{cases} n \left[2(i+2z-n)-5 \right] & \text{for } 2 \le i < 2n-2z+2 \\ n \left[2(i-2n+2z)-3 \right] & \text{for } 2n-2z+2 \le i \le n-1. \end{cases}$ $f^+(v_n) = n[2(z-1)-n].$

Therefore, $f^{+}(V) \subseteq \{0, 2, 4, ..., 2s - 2\}$, where $s = \max\{p, q\} = n(n - 1)$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $H_n(P_n)$, $(n \ge 2)$ of even order is *k*-even-edge-graceful for all $k \equiv z \pmod{p-1}$, where $0 \le z \le p-2$ and *n* is even.

For example, consider the graph $H_8(P_8)$. Here p = 8; q = 56;

 $s = \max \{p, q\} = 56$; 2s = 112. The 6-EEGL of $H_8(P_8)$ is given in Figure 13.

REFERENCES

- [1]. G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, *Proc. IEEE*, **65**(1977) 562 570.
- [2]. G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in *Theory and Applications* of Graphs, Lecture Notes in Math., 642, Springer-Verlag, New York (1978) 53 65.
- [3]. J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of Combinatorics 16 (2009), #DS6.
- [4]. B. Gayathri, M. Duraisamy, and M. Tamilselvi, Even edge graceful labeling of some cycle related graphs, *Int. J. Math. Comput. Sci.*, 2 (2007) 179 187.
- [5]. F. Harary, "Graph Theory" Addison Wesley, Reading Mass (1972).
- [6]. S. Lo, On edge-graceful labelings of graphs, *Congr. Numer.*, **50** (1985) 231 241.
- [7]. W.C. Shiu, M.H. Ling, and R.M. Low, The edge-graceful spectra of connected bicyclic graphs without pendant, JCMCC, 66 (2008) 171 185.
- [8]. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang, On the edge-graceful spectra of cycles with one chord and dumbbell graphs, *Congressus Numerantium*, **170** (2004) 171 183.