K-Even Edge-Graceful Labeling of Some Cycle Related Graphs

${ }^{1}$ Dr. B. Gayathri, ${ }^{2}$ S. Kousalya Devi
${ }^{1,2}$ M.Sc., M.Phil., Ph.D., Pgdca., M.C.A., Associate Professor And Research AdvisorPost Graduate \& Research Department Of Mathematics Periyar E.V.R.College (Autonomous)
Tiruchirappalli-620 023. Tamilnadu. India.

Abstract

In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edgegraceful graphs.We introduced k-even edge-graceful graphs. In this paper, we investigate the k-even edgegracefulness of some cycle related graphs.

KEYWORDS: k-even edge-graceful labeling, k-even edge-graceful graphs. AMS(MOS) subject classification: $05 C 78$.

I. INTRODUCTION

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary[5]. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G. The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph.

In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs and further studied in. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edge-graceful graphs. We have introduced k-even edge- graceful graphs.

Definition 1.1:

k-even edge-graceful labeling $(k-E E G L)$ of a (p, q) graph $G(V, E)$ is an injection f from E to $\{2 k-1,2 k$, $2 k+1, \ldots, 2 k+2 q-2\}$ such that the induced mapping f^{+}defined on V by $f^{+}(x)=(\Sigma f(x y))(\bmod 2 s)$ taken over all edges $x y$ are distinct and even where $s=\max \{p, q\}$ and k is an integer greater than or equal to 1 . A graph G that admits k-even edge-graceful labeling is called a k-even edge-graceful graph ($K-E E G G$).

Remark 1.2:

1 -even edge-graceful labeling is an even edge-graceful labeling.
The definition of k-edge-graceful and k-even edge-graceful are equivalent to one another in the case of trees.

The edge-gracefulness and even edge-gracefulness of odd order trees are still open. The theory of 1-even edge-graceful is completely different from that of k - even edge-graceful. For example, tree of order 4 is 2 -even edge-graceful but not 1 -even edge-graceful. In this paper we investigate the k-even edge-gracefulness of some cycle related graphs. Throughout this paper, we assume that k is a positive integer greater than or equal to 1 .

2. Prior Results:

1.Theorem : If a (p, q) graph G is k-even edge-graceful with all edges labeled with even numbers and $p \geq q$ then G is k-edge-graceful.
2.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and
$p \geq q$ then $q(q+2 k-1) \equiv \frac{p(p+1)}{2}(\bmod p)$.
Further $q(q+2 k-1) \equiv \begin{cases}0(\bmod p) & \text { if } p \text { is odd } \\ \frac{p}{2}(\bmod p) & \text { if } p \text { is even }\end{cases}$
3.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and p $\geq q$ then $p \equiv 0,1$ or $3(\bmod 4)$.
4.Theorem : If a (p, q) graph G is a k-even edge-graceful tree of odd order then
$k=\frac{p}{2}(l-1)+1$
where l is any odd positive integer and hence $k \equiv 1(\bmod p)$.
5. Observation : We observe that any tree of odd order p has the sum of the labels congruent to $0(\bmod p)$.
6. Theorem : If a (p, q) graph G is a k-even edge-graceful tree of even order with $p \equiv 0(\bmod 4)$ then $k=\frac{p}{4}(2 l-1)+1$ where l is any positive integer.

Further $k \equiv \begin{cases}\frac{p+4}{4}(\bmod p) & \text { if } l \text { is odd } \\ \frac{3 p+4}{4}(\bmod p) & \text { if } l \text { is even }\end{cases}$

2. MAIN RESULTS

Definition 2.1

Let C_{n} denote the cycle of length n. Then the join of $\{e\}$ with any one vertex of C_{n} is denoted by $C_{n} \cup$ $\{e\}$. In this graph, $p=q=n+1$.

Theorem 2.2

The graph $C_{n} \cup\{e\}$ of even order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{p}{2}\right)$, where $0 \leq z \leq \frac{p}{2}-1, n \equiv 1(\bmod 4)$ and $n \neq 1$.

Proof

Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ be the vertices of $C_{n} \cup\{e\}$, the edges $e_{i}=\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq n-1 ; e_{n}=\left(v_{n}, v_{1}\right)$ and $e_{n+1}=\left(v_{2}, v\right)$ (see Figure 1).

Figure 1: $C_{n} \cup\{e\}$ with ordinary labeling
First, we label the edges as follows:
For $k \geq 1,1 \leq i \leq n$ and i is odd,

$$
f\left(e_{i}\right)=2 k+i-2 .
$$

When i is even, we label the edges as follows:
For $k \equiv z\left(\bmod \frac{p}{2}\right), 0 \leq z \leq \frac{p-2}{4}$,

$$
f\left(e_{i}\right)= \begin{cases}2 k+n+i-2 & \text { for } 1 \leq i<\frac{n-4 z+7}{2} \\ 2 k+n+i & \text { for } \frac{n-4 z+7}{2} \leq i \leq n\end{cases}
$$

For $k \equiv \frac{p+2}{4}\left(\bmod \frac{p}{2}\right)$,

$$
f\left(e_{i}\right)=2 k+n+i
$$

For $k \equiv \frac{p+6}{4}\left(\bmod \frac{p}{2}\right)$,

$$
f\left(e_{i}\right)=2 k+n+i-2 .
$$

For $k \equiv z\left(\bmod \frac{p}{2}\right), \frac{p+10}{4} \leq z \leq \frac{p}{2}-1$,

$$
\begin{aligned}
& f\left(e_{i}\right)= \begin{cases}2 k+n+i-2 & \text { for } 1 \leq i<\frac{3 n-4 z+9}{2} \\
2 k+n+i & \text { for } \frac{3 n-4 z+9}{2} \leq i \leq n .\end{cases} \\
& f\left(e_{n+1}\right)= \begin{cases}2 k & \text { when } k \equiv 0(\bmod p) \\
2 k+2 n-2 z+2 & \text { when } k \equiv z(\bmod p) \text { and } 1 \leq z \leq p-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labels are as follows:

Case 1: $k \equiv z\left(\bmod \frac{p}{2}\right), 0 \leq z \leq \frac{p-2}{4}$

$$
f^{+}\left(v_{i}\right)=\left\{\begin{array}{lc}
n+4 z+2 i-5 & \text { for } 1 \leq i<\frac{n-4 z+7}{2} \\
4 z-n+2 i-5 & \text { for } \frac{n-4 z+7}{2} \leq i \leq n
\end{array}\right.
$$

Case 2: $k \equiv \frac{p+2}{4}\left(\bmod \frac{p}{2}\right)$

$$
f^{+}\left(v_{1}\right)=2 n \quad ; \quad f^{+}\left(v_{i}\right)=2 i-2 \quad \text { for } 2 \leq i \leq n
$$

Case 3: $k \equiv \frac{p+6}{4}\left(\bmod \frac{p}{2}\right)$

$$
f^{+}\left(v_{i}\right)=2 i \quad \text { for } 1 \leq i \leq n
$$

Case 4: $k \equiv z\left(\bmod \frac{p}{2}\right), \frac{p+10}{4} \leq z \leq \frac{p}{2}-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 z-n+2 i-7 & \text { for } 1 \leq i<\frac{3 n-4 z+9}{2} \\ 4 z-3 n+2 i-7 & \text { for } \frac{3 n-4 z+9}{2} \leq i \leq n\end{cases}
$$

For $k \equiv z\left(\bmod \frac{p}{2}\right), 0 \leq z \leq \frac{p}{2}-1$,
$f^{+}\left(v_{n+1}\right)=0$.

Therefore, $f^{+}(V)=\{0,2,4, \ldots, 2 s-2\}$, where $s=\max \{p, q\}=n+1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $C_{n} \cup\{e\}$ of even order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{p}{2}\right)$, where $0 \leq z \leq \frac{p}{2}-1, n \equiv 1(\bmod 4)$ and $n \neq 1$.

For example, consider the graph $C_{13} \cup\{e\}$. Here $n=13$;
$s=\max \{p, q\}=14 ; 2 s=28$. The 21-EEGL of $C_{13} \cup\{e\}$ is given in Figure 2.

Figure 2: 21-EEGL of $C_{13} \cup\{e\}$
For example, consider the graph $C_{17} \cup\{e\}$. Here $n=17$;
$s=\max \{p, q\}=18 ; 2 s=36$. The $5-E E G L$ of $C_{17} \cup\{e\}$ is given in Figure 3.

Figure 3: 5-EEGL of $C_{17} \cup\{e\}$

Definition 2.3 [8]

For $p \geq 4$, a cycle (of order p) with one chord is a simple graph obtained from a p-cycle by adding a chord. Let the p-cycle be $v_{1} v_{2} \ldots v_{p} v_{1}$. Without loss of generality, we assume that the chord joins v_{1} with any one v_{i}, where $3 \leq i \leq p-1$. This graph is denoted by $C_{p}(i)$. For example $C_{p}(5)$ means a graph obtained from a p cycle by adding a chord between the vertices v_{1} and v_{5}. In this graph, $q=p+1$.

Theorem 2.4

The graph $C_{n}(i),(n>4), 3 \leq i \leq n-1$, cycle with one chord of odd order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{q}{2}\right)$, where $0 \leq z \leq \frac{q}{2}-1$.

Proof

Let $\left\{v_{1}, \quad v_{2}, \quad v_{3}, \ldots, \quad v_{i}, \quad v_{i+1}, \ldots, v_{n}\right\}$ be the vertices of $C_{n}(i)$, the edges $e_{i}=\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq n-1 ; e_{n}=\left(v_{n}, v_{1}\right)$ and $e_{n+1}=\left(v_{1}, v_{i}\right), 3 \leq i \leq n-1$ (see Figure 4). The chord connecting the vertex v_{1} with $v_{i},(i \geq 3)$ is shown in Figure 4. For this graph, $p=n$ and $q=n+1$.

Figure 4: $C_{n}(i)$ with ordinary labeling
First, we label the edges as follows:
For $k \geq 1$ and $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(e_{i}\right) & = \begin{cases}2 k+i-2 & \text { when } i \text { is odd } \\
2 k+n+i-2 & \text { when } i \text { is even. }\end{cases} \\
f\left(e_{n+1}\right) & = \begin{cases}2 k & \text { when } k \equiv 0(\bmod q) \\
2 k+2 n-2 z+2 & \text { when } k \equiv z(\bmod q), 1 \leq z \leq q-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labels are as follows:

Case I: $n \equiv 1(\bmod 4)$ and $n \neq 1$

Case 1: $k \equiv z\left(\bmod \frac{q}{2}\right), 0 \leq z \leq \frac{q+2}{4}$

$$
f^{+}\left(v_{i}\right)=\left\{\begin{array}{lc}
4 z+n+2 i-5 & \text { for } 1 \leq i<\frac{n-4 z+7}{2} \\
4 z-n+2 i-7 & \text { for } \frac{n-4 z+7}{2} \leq i \leq n
\end{array}\right.
$$

Case 2: $k \equiv \frac{q+6}{4}\left(\bmod \frac{q}{2}\right)$

$$
f^{+}\left(v_{i}\right)=2 i \quad \text { for } 1 \leq i \leq n .
$$

Case 3: $k \equiv z\left(\bmod \frac{q}{2}\right), \frac{q+10}{4} \leq z \leq \frac{q}{2}-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 z-n+2 i-7 & \text { for } 1 \leq i<\frac{3 n-4 z+9}{2} \\ 4 z-3 n+2 i-9 & \text { for } \frac{3 n-4 z+9}{2} \leq i \leq n\end{cases}
$$

Case II: $n \equiv 3(\bmod 4)$ and $n \neq 3$

Case 1: $k \equiv z\left(\bmod \frac{q}{2}\right), 0 \leq z \leq \frac{q}{4}$

$$
f^{+}\left(v_{i}\right)=\left\{\begin{array}{lc}
4 z+n+2 i-5 & \text { for } 1 \leq i<\frac{n-4 z+7}{2} \\
4 z-n+2 i-7 & \text { for } \frac{n-4 z+7}{2} \leq i \leq n
\end{array}\right.
$$

Case 2: $k \equiv \frac{q+4}{4}\left(\bmod \frac{q}{2}\right)$

$$
f^{+}\left(v_{i}\right) \quad=2 i-2 \text { for } 1 \leq i \leq n .
$$

Case 3: $k \equiv z\left(\bmod \frac{q}{2}\right), \frac{q+8}{4} \leq z \leq \frac{q}{2}-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 z-n+2 i-7 & \text { for } 1 \leq i<\frac{3 n-4 z+9}{2} \\ 4 z-3 n+2 i-9 & \text { for } \frac{3 n-4 z+9}{2} \leq i \leq n\end{cases}
$$

Therefore, $f^{+}(V) \subseteq\{0,2,4, \ldots, 2 s-2\}$, where $s=\max \{p, q\}=n+1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph
$C_{n}(i),(n>4), 3 \leq i \leq n-1$, cycle with one chord of odd order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{q}{2}\right)$, $0 \leq z \leq \frac{q}{2}-1$.

For example, consider the graph $C_{9}(5)$. Here $n=9 ; s=\max \{p, q\}=10 ; 2 s=20$.

The 15 -even-edge-graceful labeling of $C_{9}(5)$ is given in Figure 5 .

Figure 5: 15-EEGL of $\mathrm{C}_{9}(5)$
For example, consider the graph $C_{11}(6)$. Here $n=11 ; s=\max \{p, q\}=12 ; 2 s=24$. The $11-E E G L$ of $C_{11}(6)$ is given in Figure 6.

Figure 6: 11-EEGL of $C_{11}(6)$

Theorem 2.5

The graph $C_{n}(i),(n \geq 4), 3 \leq i \leq n-1$, cycle with one chord of even order is k-even-edge-graceful for all $k \equiv z(\bmod q)$, where $0 \leq z \leq q-1$ and $n \equiv 0(\bmod 4)$.

Proof
Let the vertices and edges be defined as in Theorem 6.3.2.
First, we label the edges as follows:
For $k \geq 1$,

$$
\begin{array}{lrl}
f\left(e_{1}\right)=2 k+1 & ; & f\left(e_{2}\right)=2 k-1 \\
f\left(e_{i}\right)=2 k+2 i-3 & \text { for } 3 \leq i<\frac{n}{2}+3 .
\end{array}
$$

For $k \geq 1$ and $\frac{n}{2}+3 \leq i \leq n$,

$$
f\left(e_{i}\right)= \begin{cases}2 k+2 i+1 & \text { when } i \text { is odd } \\ 2 k+2 i-3 & \text { when } i \text { is even. }\end{cases}
$$

$$
f\left(e_{n+1}\right)= \begin{cases}2 k & \text { when } k \equiv 0(\bmod q) \\ 2 k+2 n-2 z+2 & \text { when } k \equiv z(\bmod q), 1 \leq z \leq q-1\end{cases}
$$

Then the induced vertex labels are as follows:
Case 1: $k \equiv 0(\bmod q)$

$$
\begin{aligned}
f^{+}\left(v_{1}\right) & =2 n-2 \\
f^{+}\left(v_{3}\right) & =2 \\
f^{+}\left(v_{i}\right) & =\left\{\begin{array}{ll}
4 i-8 & f^{+}\left(v_{2}\right)=0 . \\
4 i-2 n-6 & \text { for } 4 \leq i<\frac{n}{2}+3 \\
4
\end{array}\right)
\end{aligned}
$$

Case 2: $k \equiv z(\bmod q), 1 \leq z \leq \frac{q-1}{2}$

$$
f^{+}\left(v_{i}\right)=4 z+4 i-8 \quad \text { when } i=1,2
$$

For $k \equiv z(\bmod q), 1 \leq z \leq \frac{q-3}{2}$,

$$
f^{+}\left(v_{3}\right)=4 z+2
$$

For $4 \leq i \leq n$,

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 z+4 i-8 & \text { for } 4 \leq i<\frac{n}{2}-z+3 \\ 4 z+4 i-2 n-10 & \text { for } \frac{n}{2}-z+3 \leq i<\frac{n}{2}+3 \\ 4 z+4 i-2 n-6 & \text { for } \frac{n}{2}+3 \leq i<n-z+2 \\ 4 z+4 i-4 n-8 & \text { for } n-z+2 \leq i \leq n\end{cases}
$$

For $k \equiv \frac{q-1}{2}(\bmod q)$,

$$
\begin{array}{ll}
f^{+}\left(v_{3}\right) & =0 \\
f^{+}\left(v_{i}\right) & = \begin{cases}4 i-10 & \text { for } 4 \leq i<\frac{n}{2}+3 \\
4 i-2 n-8 & \text { for } \frac{n}{2}+3 \leq i \leq n .\end{cases}
\end{array}
$$

Case 3: $k \equiv \frac{q+1}{2}(\bmod q)$

$$
\begin{aligned}
& f^{+}\left(v_{1}\right)=2 n \quad ; \quad f^{+}\left(v_{2}\right)=2 . \\
& f^{+}\left(v_{3}\right)=4 .
\end{aligned}
$$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 i-6 & \text { for } 4 \leq i<\frac{n}{2}+2 \\ 0 & \text { when } i=\frac{n}{2}+2 \\ 4 i-2 n-4 & \text { for } \frac{n}{2}+3 \leq i \leq n .\end{cases}
$$

Case 4: $k \equiv z(\bmod q), \frac{q+3}{2} \leq z \leq q-1$

$$
\begin{aligned}
f^{+}\left(v_{i}\right) & =4 z+4 i-2 n-10 \text { when } i=1,2 . \\
f^{+}\left(v_{3}\right) & =4 z-2 n .
\end{aligned}
$$

For $k \equiv z(\bmod q), \frac{q+3}{2} \leq z \leq q-2$,

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 z+4 i-2 n-10 & \text { for } 4 \leq i<n-z+3 \\ 4 z+4 i-4 n-12 & \text { for } n-z+3 \leq i<\frac{n}{2}+3 \\ 4 z+4 i-4 n-8 & \text { for } \frac{n}{2}+3 \leq i<\frac{3 n}{2}-z+3 \\ 4 z+4 i-6 n-10 & \text { for } \frac{3 n}{2}-z+3 \leq i \leq n\end{cases}
$$

For $k \equiv q-1(\bmod q)$,

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 i-12 & \text { for } 4 \leq i<\frac{n}{2}+3 \\ 4 i-2 n-10 & \text { for } \frac{n}{2}+3 \leq i \leq n\end{cases}
$$

Therefore, $f^{+}(V) \subseteq\{0,2,4, \ldots, 2 s-2\}$, where $s=\max \{p, q\}=n+1$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $C_{n}(i),(n \geq 4), 3 \leq i \leq n-1$, cycle will one chord of even order is k-even-edge-graceful for all $k \equiv z(\bmod q)$, where $0 \leq z \leq q-1$ and $n \equiv 0(\bmod 4)$.

For example, consider the graph $C_{16}(5)$, Here $n=16 ; s=\max \{p, q\}=17 ; 2 s=34$.
The $18-E E G L$ of $C_{16}(5)$ is given in Figure 7.

Figure 7: 18-EEGL of $C_{16}(5)$

Definition 2.6

The crown $C_{n} \odot K_{1}$ is the graph obtained from the cycle C_{n} by attaching pendant edge at each vertex of the cycle and is denoted by C_{n}^{+}. In this graph, $\quad p=q=2 n$.

Theorem 2.7

The crown graph $C_{n}^{+},(n \geq 3)$ of even order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{p}{3}\right)$, where $0 \leq z \leq \frac{p}{3}-1$ and $n \equiv 0(\bmod 3)$.

Proof

For this graph, $p=q=2 n$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices and pendant vertices of C_{n}^{+}respectively.

Figure 8: C_{n}^{+}with ordinary labeling
The edges are defined by
$e_{i}=\left(v_{i}, v_{i+1}\right) \quad$ for $1 \leq i \leq n-1 ; \quad e_{n}=\left(v_{n}, v_{1}\right)$
and $\quad e_{i}^{\prime}=\left(v_{i}, v_{i}^{\prime}\right) \quad$ for $1 \leq i \leq n$ (see Figure 8).

First, we label the edges as follows:
For $k \geq 1$,

$$
\begin{array}{ll}
f\left(e_{i}\right)=2 k+4 i-5 & \text { for } 1 \leq i \leq n \\
f\left(e_{1}^{\prime}\right)=2 k & \\
f\left(e_{i}^{\prime}\right)=2 k+4(n-i+1) & \text { for } 2 \leq i \leq n
\end{array}
$$

Then the induced vertex labels are as follows:

Case 1: $k \equiv \mathbf{0}\left(\bmod \frac{p}{3}\right)$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 n+4 i-10 & \text { when } i=1,2 \\ 4 i-10 & \text { for } 3 \leq i \leq n\end{cases}
$$

Case 2: $k \equiv z\left(\bmod \frac{p}{3}\right), 1 \leq z \leq \frac{p}{3}-1$ and z is odd

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{5-3 z}{2} \\ 6 z-4 n+4 i-10 & \text { for } n+\frac{5-3 z}{2} \leq i \leq n\end{cases}
$$

Case 3: $k \equiv z\left(\bmod \frac{p}{3}\right), 1 \leq z \leq \frac{p}{3}-1$ and z is even

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{6-3 z}{2} \\ 6 z-4 n+4 i-10 & \text { for } n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

The pendant vertices will have the labels $(\bmod 2 p)$ of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph $C_{n}^{+},(n \geq 3)$ of even order is k-even-edge-graceful for all $k \equiv z\left(\bmod \frac{p}{3}\right)$, where $0 \leq z \leq \frac{p}{3}-1$ and $n \equiv 0(\bmod 3)$.

For example, consider the graph C_{6}^{+}. Here $p=q=12 ; s=\max \{p, q\}=12 ; 2 s=24$. The 2-even-edgegraceful labeling of C_{6}^{+}is given in Figure 9.

Figure 9: 2-EEGL of C_{6}^{+}

Theorem 2.8

The crown graph $C_{n}^{+},(n \geq 4)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p)$, where $0 \leq z \leq p-1, n \equiv 1(\bmod 3)$ and $n \neq 1$.

Proof

Let the vertices and edges be defined as in Theorem 6.4.2. The edge labels are also same as in Theorem 6.4.2.

Then the induced vertex labels are as follows:

Case 1: $k \equiv 0(\bmod p)$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 n+4 i-10 & \text { when } i=1,2 \\ 4 i-10 & \text { for } 3 \leq i \leq n\end{cases}
$$

When z is odd, the induced vertex labels are given below:
Case 2: $k \equiv z(\bmod p), 1 \leq z \leq \frac{p+1}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{5-3 z}{2} \\ 6 z-4 n+4 i-10 & \text { for } n+\frac{5-3 z}{2} \leq i \leq n\end{cases}
$$

Case 3: $k \equiv z(\bmod p), \frac{p+4}{3} \leq z \leq \frac{2 p+2}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-4 n+4 i-10 & \text { for } 1 \leq i<2 n+\frac{5-3 z}{2} \\ 6 z-8 n+4 i-10 & \text { for } 2 n+\frac{5-3 z}{2} \leq i \leq n\end{cases}
$$

Case 4: $k \equiv z(\bmod p), \frac{2 p+5}{3} \leq z \leq p-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-8 n+4 i-10 & \text { for } 1 \leq i<3 n+\frac{5-3 z}{2} \\ 6 z-12 n+4 i-10 & \text { for } 3 n+\frac{5-3 z}{2} \leq i \leq n\end{cases}
$$

When z is even, the induced vertex labels are given below:
Case 5: $k \equiv z(\bmod p), 1 \leq z \leq \frac{p+1}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{6-3 z}{2} \\ 6 z-4 n+4 i-10 & \text { for } n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

Case 6: $k \equiv z(\bmod p), \frac{p+4}{3} \leq \mathrm{z} \leq \frac{2 p+2}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-4 n+4 i-10 & \text { for } 1 \leq i<2 n+\frac{6-3 z}{2} \\ 6 z-8 n+4 i-10 & \text { for } 2 n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

Case 7: $k \equiv z(\bmod p), \frac{2 p+5}{3} \leq z \leq p-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-8 n+4 i-10 & \text { for } 1 \leq i<3 n+\frac{6-3 z}{2} \\ 6 z-12 n+4 i-10 & \text { for } 3 n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

The pendant vertices will have the labels $(\bmod 2 p)$ of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph $C_{n}^{+},(n \geq 4)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p)$, where $0 \leq z \leq p-1, n \equiv 1(\bmod 3)$ and $n \neq 1$.

For example, consider the graph C_{7}^{+}. Here $p=q=14 ; s=\max \{p, q\}=14 ; 2 s=28$. The 5-even-edgegraceful labeling of C_{7}^{+}is given in Figure 10.

Figure 10: 5-EEGL of \boldsymbol{C}_{7}^{+}

Theorem 2.9

The crown graph $C_{n}^{+},(n \geq 5)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p)$, where $0 \leq z \leq p$ $-1, n \equiv 2(\bmod 3)$ and $n \neq 2$.

Proof

Let the vertices and edges be defined as in Theorem 2.7. The edge labels are also same as in Theorem 2.7.

Then the induced vertex labels are as follows:
Case 1: $k \equiv 0(\bmod p)$

$$
f^{+}\left(v_{i}\right)= \begin{cases}4 n+4 i-10 & \text { when } i=1,2 \\ 4 i-10 & \text { for } 3 \leq i \leq n\end{cases}
$$

When z is odd, the induced vertex labels are given below:
Case 2: $k \equiv z(\bmod p), 1 \leq z \leq \frac{p+2}{3}$

$$
f^{+}\left(v_{i}\right)=\left\{\begin{array}{cc}
6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{5-3 z}{2} \\
6 z-4 n+4 i-10 & \text { for } n+\frac{5-3 z}{2} \leq i \leq n .
\end{array}\right.
$$

Case 3: $k \equiv z(\bmod p), \frac{p+5}{3} \leq z \leq \frac{2 p+1}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-4 n+4 i-10 & \text { for } 1 \leq i<2 n+\frac{5-3 z}{2} \\ 6 z-8 n+4 i-10 & \text { for } 2 n+\frac{5-3 z}{2} \leq i \leq n\end{cases}
$$

Case 4: $k \equiv z(\bmod p), \frac{2 p+4}{3} \leq z \leq p-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-8 n+4 i-10 & \text { for } 1 \leq i<3 n+\frac{5-3 z}{2} \\ 6 z-12 n+4 i-10 & \text { for } 3 n+\frac{5-3 z}{2} \leq i \leq n .\end{cases}
$$

When z is even, the induced vertex labels are given below:
Case 5: $k \equiv z(\bmod p), 1 \leq z \leq \frac{p+2}{3}$

$$
f^{+}\left(v_{i}\right)=\left\{\begin{array}{cc}
6 z+4 i-10 & \text { for } 1 \leq i<n+\frac{6-3 z}{2} \\
6 z-4 n+4 i-10 & \text { for } n+\frac{6-3 z}{2} \leq i \leq n
\end{array}\right.
$$

Case 6: $k \equiv z(\bmod p), \frac{p+5}{3} \leq \mathrm{z} \leq \frac{2 p+1}{3}$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-4 n+4 i-10 & \text { for } 1 \leq i<2 n+\frac{6-3 z}{2} \\ 6 z-8 n+4 i-10 & \text { for } 2 n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

Case 7: $k \equiv z(\bmod p), \frac{2 p+4}{3} \leq z \leq p-1$

$$
f^{+}\left(v_{i}\right)= \begin{cases}6 z-8 n+4 i-10 & \text { for } 1 \leq i<3 n+\frac{6-3 z}{2} \\ 6 z-12 n+4 i-10 & \text { for } 3 n+\frac{6-3 z}{2} \leq i \leq n\end{cases}
$$

The pendant vertices will have the labels $(\bmod 2 p)$ of the edges incident on them. Clearly, the vertex labels are all distinct and even. Hence, the crown graph $C_{n}^{+},(n \geq 5)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p)$, where $0 \leq z \leq p-1, n \equiv 2(\bmod 3)$ and $n \neq 2$.

For example, consider the graph C_{5}^{+}. Here $p=q=10 ; s=\max \{p, q\}=10 ; 2 s=20$.

The 10 -even-edge-graceful labeling of C_{5}^{+}is given in Figure 11.

Figure 11: $10-E E G L$ of C_{5}^{+}

Definition 2.10

A graph $H_{m}(G)$ is obtained from a graph G by replacing each edge with m parallel edges.

Theorem 2.11

The graph $H_{n}\left(P_{n}\right), \quad(n \geq 2)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p-1)$, where $0 \leq z \leq p-2$ and n is even.
Proof
Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of $H_{n}\left(P_{n}\right)$. Let the edges $e_{i j}$ of $H_{n}\left(P_{n}\right)$ be defined by $e_{i j}=\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq n-1,1 \leq j \leq n$ (see Figure 12).

Figure 12: $H_{n}\left(P_{n}\right)$ with ordinary labeling

For this graph, $p=n ; q=n(n-1)$.
First, we label the edges as follows:
For $k \geq 1$,

$$
f\left(e_{i j}\right)= \begin{cases}2 k+n i+2 j-5 & \text { for } 1 \leq i \leq n-1, i \text { is odd and } 1 \leq j \leq n \\ 2 k+2 j+n(i-1)-4 & \text { for } 1 \leq i \leq n-1, i \text { is even and } 1 \leq j \leq n\end{cases}
$$

Then the induced vertex labels are as follows:
Case 1: $\boldsymbol{k} \equiv \mathbf{0}(\bmod \boldsymbol{p}-1)$

$$
\begin{aligned}
f^{+}\left(v_{1}\right) & =2 n(n-2) . \\
f^{+}\left(v_{i}\right) & = \begin{cases}n(2 n+2 i-9) & \text { for } 2 \leq i<4 \\
n(2 i-7) & \text { for } 4 \leq i \leq n-1 .\end{cases} \\
f^{+}\left(v_{n}\right) & =n(n-4) .
\end{aligned}
$$

Case 2: $k \equiv z(\bmod p-1), 1 \leq z \leq p-2$

$$
f^{+}\left(v_{1}\right)=2 n(z-1) .
$$

Subcase (i): $\quad k \equiv 1(\bmod p-1)$

$$
\begin{aligned}
f^{+}\left(v_{i}\right) & =n(2 i-3) \text { for } 2 \leq i \leq n-1 . \\
f^{+}\left(v_{n}\right) & =n[n+2(z-2)] .
\end{aligned}
$$

Subcase (ii): $\quad k \equiv z(\bmod p-1), 2 \leq z \leq \frac{p}{2}$

$$
\begin{aligned}
& f^{+}\left(v_{i}\right)= \begin{cases}n(2 i-3)+4 n(z-1) & \text { for } 2 \leq i<n-2 z+3 \\
n[2(i+2 z-n)-5] & \text { for } n-2 z+3 \leq i \leq n-1 .\end{cases} \\
& f^{+}\left(v_{n}\right)=n[n+2(z-2)] .
\end{aligned}
$$

Subcase (iii): $\quad k \equiv z(\bmod p-1), \frac{p+2}{2} \leq z \leq p-2$

$$
\begin{aligned}
f^{+}\left(v_{i}\right) & = \begin{cases}n[2(i+2 z-n)-5] \\
n[2(i-2 n+2 z)-3]\end{cases} \\
f^{+}\left(v_{n}\right) & \text { for } 2 \leq i<2 n-2 z+2
\end{aligned} \quad=n[2(z-1)-n] . \quad . \quad .
$$

Therefore, $f^{+}(V) \subseteq\{0,2,4, \ldots, 2 s-2\}$, where $s=\max \{p, q\}=n(n-1)$. So, it follows that the vertex labels are all distinct and even. Hence, the graph $H_{n}\left(P_{n}\right),(n \geq 2)$ of even order is k-even-edge-graceful for all $k \equiv z(\bmod p-1)$, where $0 \leq z \leq p-2$ and n is even. -

For example, consider the graph $H_{8}\left(P_{8}\right)$. Here $p=8 ; q=56$;
$s=\max \{p, q\}=56 ; 2 s=112$. The $6-E E G L$ of $H_{8}\left(P_{8}\right)$ is given in Figure 13.

Figure 13: 6-EEGL of $H_{8}\left(P_{8}\right)$

REFERENCES

1]. G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65(1977) 562 - 570.
[2]. G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math., 642, Springer-Verlag, New York (1978) 53-65.
[3]. J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of Combinatorics 16 (2009), \#DS6.
[4]. B. Gayathri, M. Duraisamy, and M. Tamilselvi, Even edge graceful labeling of some cycle related graphs, Int. J. Math. Comput. Sci., 2 (2007) 179-187.
[5]. F. Harary, "Graph Theory" - Addison Wesley, Reading Mass (1972).
[6]. S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50 (1985) 231-241.
[7]. W.C. Shiu, M.H. Ling, and R.M. Low, The edge-graceful spectra of connected bicyclic graphs without pendant, JCMCC, $\mathbf{6 6}$ (2008) 171-185.
[8]. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang, On the edge-graceful spectra of cycles with one chord and dumbbell graphs, Congressus Numerantium, 170 (2004) 171-183.

